Todeterminehowmanydistinct4digitnumberscanbeformedusingthedigits1,2,3,and4withoutrepetition,weanalyzetheproblemasfollows:
StepbyStepReasoning
˙▂˙ Wearegivenfourdistinctdigits:1,2,3,and4.Wewanttoform4digitnumbers,meaningallfourdigitsmustbeusedexactlyonceineachnumber.
Thisisaclassicpermutationproblemwhere:
≥﹏≤ Alldigitsareused.
Nodigitisrepeated.
Theorderofdigitsmatters(since1234≠1243).
?0? Thetotalnumberofsuchpermutationsiscalculatedusingtheformulaforpermutationsof$n$itemstaken$r$atatime:
$$
P(n,r)=\frac{n!}{(nr)!}
$$
Here,$n=4$and$r=4$,so:
$$
P(4,4)=\frac{4!}{(44)!}=\frac{4!}{0!}=\frac{24}{1}=24
$$
Alternatively,wecancomputeitdirectlybyconsideringthechoicesavailableforeachposition:
ˋωˊ Firstdigit:4choices
Seconddigit:3remainingchoices
Thirddigit:2remainingchoices
Fourthdigit:1remainingchoice
$$
\text{Totalcombinations}=4\times3\times2\times1=24
$$
FinalAnswer
Allresultingnumbersarevalid4digitnumberssincenoneofthedigitsiszero,andeverypermutationusesallfourdigitsexactlyonce.Therefore,therearenoinvalidcasesduetoleadingzerosorotherconstraints.
$$
ˋ▽ˊ \boxed{24}
$$
